Physicochemical features of the HERG channel drug binding site.

نویسندگان

  • David Fernandez
  • Azad Ghanta
  • Gregory W Kauffman
  • Michael C Sanguinetti
چکیده

Blockade of hERG K(+) channels in the heart is an unintentional side effect of many drugs and can induce cardiac arrhythmia and sudden death. It has become common practice in the past few years to screen compounds for hERG channel activity early during the drug discovery process. Understanding the molecular basis of drug binding to hERG is crucial for the rational design of medications devoid of this activity. We previously identified 2 aromatic residues, Tyr-652 and Phe-656, located in the S6 domain of hERG, as critical sites of interaction with structurally diverse drugs. Here, Tyr-652 and Phe-656 were systematically mutated to different residues to determine how the physicochemical properties of the amino acid side group affected channel block by cisapride, terfenadine, and MK-499. The potency for block by all three drugs was well correlated with measures of hydrophobicity, especially the two-dimensional approximation of the van der Waals hydrophobic surface area of the side chain of residue 656. For residue 652, an aromatic side group was essential for high affinity block, suggesting the importance of a cation-pi interaction between Tyr-652 and the basic tertiary nitrogen of these drugs. hERG also lacks a Pro-Val-Pro motif common to the S6 domain of most other voltage-gated K(+) channels. Introduction of Pro-Val-Pro into hERG reduced sensitivity to drugs but also altered channel gating. Together, these findings assign specific residues to receptor fields predicted by pharmacophore models of hERG channel blockers and provide a refined molecular understanding of the drug binding site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing hERG Pore Models As Templates for Drug Docking Using Published Experimental Constraints: The Inactivated State in the Context of Drug Block

Many structurally and therapeutically diverse drugs interact with the human heart K+ channel hERG by binding within the K+ permeation pathway of the open channel, leading to drug-induced 'long QT syndrome'. Drug binding to hERG is often stabilized by inactivation gating. In the absence of a crystal structure, hERG pore homology models have been used to characterize drug interactions. Here we as...

متن کامل

Predictive in silico modeling for hERG channel blockers.

hERG-mediated sudden death as a side effect of non-antiarrhythmic drugs has been receiving increased regulatory attention. Perhaps owing to the unique shape of the ligand-binding site and its hydrophobic character, the hERG channel has been shown to interact with pharmaceuticals of widely varying structure. Several in silico approaches have attempted to predict hERG channel blockade. Some of th...

متن کامل

The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.

The molecular determinants of high-affinity human ether-a-go-go-related gene (HERG) potassium channel blockade by methanesulfonanilides include two aromatic residues (Phe656 and Tyr652) on the inner helices (S6) and residues on the pore helices that face into the inner cavity, but determinants for lower-affinity HERG blockers may be different. In this study, alanine-substituted HERG channel mut...

متن کامل

Mechanism of block and identification of the verapamil binding domain to HERG potassium channels.

Calcium channel antagonists have diverse effects on cardiac electrophysiology. We studied the effects of verapamil, diltiazem, and nifedipine on HERG K+ channels that encode IKr in native heart cells. In our experiments, verapamil caused high-affinity block of HERG current (IC50=143.0 nmol/L), a value close to those reported for verapamil block of L-type Ca2+ channels, whereas diltiazem weakly ...

متن کامل

Role of the pH in state-dependent blockade of hERG currents

Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 11  شماره 

صفحات  -

تاریخ انتشار 2004